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The research project consisted of three different phases:
L 1) an analytical investigation
During this phase the various reflection processes which can occur when
a plane shock wave refiects over a double wedge were predicted. In addition,
the transition boundaries between the various reflection processes were
established. Finally the domains of the different reflection processes and
their bounggﬁes were drawn in the (B{,, Bf,) - plane for given values of M;.

> 2) an experimental investigation - - .

During this phase experiments were®conducted in—we? to verify the
above mentioned analysis.in-addition/ some other aspects regarding the
reflection of a plane wedge over 8 ‘double vedge were investigated
experimentally. in particular, the wave configuration which is approached

v asymptotically should be mentioned., The results of this particular
experimental study enables us @M our shock polar analysis.

= 3) a numerical investigation
In addition\w above mentioned analytical and experimental
investigations, a numericaP code based on the TVD scheme was developed.
The wave configurations as predicted by the numerical code were compared
with those obtained experimentally and found to be in excellient agreement.
This gave us some confidence in the numerical code and its predictions
regarding the flow field generated during the reflection in general, and the
pressure distribution alang the wedge surface, in particular. C
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This report is divided into 3 parts:

Part 1. This part deals with the analytical prediction and the experimental
verification of the domains and boundaries of the various types of the
reflection processes of a plane shock wave over a double wedge.

Part 2. This part includes experiments regarding the wave configuration of
the refiection which is approached asymptotically.

Part 3. This part contains some e: r3les of the results which were
obtained by the numerical code.




Part 1

Domains and Boundaries of the Various Types of the Reflection
Processes af a Plane Shock wWave Over a Double Wedge

Analytical and Experimental investigation




INTRODUCTION

Ben-Dor, Dewey and Takayama (1987) have studied, both analytically
and experimentally, the reflection of a planar shock over a double
wedge. In their analytical study they provided a detailed shock polar
analysis of the reflection process, based on the assumption that the
reflection over the second surface of the double wedge approaches
asymptotically the reflection which would have been obtained over a
single wedge with the same wedge angle.

A schematical illustration of a double wedge is shown in figure 1.
9; and e; are the slopes of the first and second surfaces of the double
wedge, respectively. The difference between these two slopes is
Aew = e; - e;. If Aew > 0 the double wedge is concave, (figure la), and
if Aew ¢ 0 the double wedge is convex (figure 1b).

The domains of different types of reflection process over a double
wedge in the (6&, 6;)-p1ane are shown in figure 2. The line Aew =0
divides the (8;, e;)—plane into the domains of concave and convex double

GSEt determines the type of reflection over the

wedges. The line 6&

det
w

first surface of the double wedge. If 9; < B then the incident shock

wave reflects over the first surface as a Mach reflection (MR), and if

81 > edet
W W
eiet determines the type of reflection which is finally obtained over

then the initial reflection is regular (RR). The line 62 =

det
w

then the final reflection over the

det
w

the second surface. If 6; < 0

second surface is a MR, and if 9& > 8 then the final reflection over
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the second surface is & RR. In the case of a concave double wedge (Aew
> 0) and a Mach reflection over the first surface (6; < 63Et) the Mach

stem of the MR reflects eventually over the second surface. The type of

its reflection depends upon whether Aew is smaller or greater than eget.
If ABw < eget then the Mach stem will reflect over the second surface

X de
as a MR, and if Aew > ew

* then it will reflect as a RR.

The above described transition boundaries give rise to seven
domains of different types of reflection processes over a double wedge.
They are numbered 1 to 7 in figure 2 and are summarized in more detail
in table 1.

The three reflection processes which are investigated in this study
are those appropriate to domains 3, 4 and 6, for only in these three
domains the final reflectipn over the second surface of the double

LS

wedge a MR. In the following a detailed description of the reflection

process in each of these three domains is given.

Domain 3

- Since Aew < 0, fhe;double wedge is convex.

det

w the incident shock wave reflects over the first

- Since 6! < ©
W

surface as a MR,

det

w the final reflection of the incident shock wave over

~ Since 8% < @
w

the second surface is also a MR.




-4_
A schematical illustration of this reflection process is shown in

figure 3.

Domain &

- Since Aew < 0, the double wedge is convex.

det

v the incident shock wave reflects over the first

- Since 8! > ©
w

surface as a RR.

det

v the final reflection of the incident shock wave over

- Since 62 < 6
W
the second surface is a MR.
A schematical illustration of this reflection process is shown in

figure 4.

Domain 6

Unlike the previous two cases, here Aew > 0, and therefore the

det

double wedge is concave. Since 6& < 9w

, the incident shock wave
reflects over the first surface as a MR. When the Mach stem of this MR

collides with the leading edge of the second surface, for which

Aew < eset, it reflects over it as a MR. The two Mach reflections

interact to create the final MR of the incident shock wave over the

second surface, whose slope satisfies 6; < Gget. A schematical

illustration of this reflection process is shown in figure 5. Note that

the interaction of the two triple points, T, and T,, at point Q, results
N

in two/&riple points: T,, associated with the MR of the incident shock
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wave over the second surface and an additional triple point, T,, which

'splits' the reflected shock wave.

The previously mentioned assumption that the MR over the second
surface approaches asymptotically the MR which would have been obtained
by the same incident shock wave over a single wedge with an angle
ew = 6; implies that the triple point trajectory angle y of each of the
Mach reflections shown in figures 3, 4 and 5, over the second surface
should approach asymptotically the value which would have been obtained
with the same incident shock wave over a single wedge with an angle
ew = 6;. The verification of this assumption, which is basic to Ben-Dor

et al's (1987) anal;sis, is the subject of the present experimental

study.

Present >cudy

In order to check the foregoing mentioned assumption, an
experimental study was carried out in which the reflection process over
a double wedge was recorded using high speed photography. Details of

the higﬁ speed photography-technique caﬁ be found in the papers by Dewey

and Walker (1975) and Walker, Scotten and Dewey (1982). The system con-
sists of a giant ruby laser which can be pulsed in 50 psec intervals.
The phenomenon was recorded with a rotating-mirror camera. Two experi-
ments with very-nearly identical incident shock wave Mach numbers were
conducted over each double wedge, with the first laser pulse of the
second experiment delayed by 25 psec with respect to the first pulse of

the first experiment so that it was
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possible to obtain multiple schlieran photographs of the reflection
process over a double wedge in 25 usec intervals,

Once the two experiments were recorded, the trajectories of the
triple points and the points where the feet of the Mach stems touch the
reflecting surfaces were digitized. The digitized data were then
evaluated to obtain specific details regarding the direction of
propagation of the various triple points, their velocities and the
velocities of the feet of the Mach stems along the reflecting surfaces.

In order to obtain the values of the triple point trajectory angle,
X, the velocity of the triple point, VT' and the velocity of the foot of
the Mach stem, V., to which the MR over the second surface was assumed
to approach asymptotically, the reflection of an incident shock wave
with an identical Mach number over a single wedge with an angle 8w = 6;
was recorded. The values of y, VT and VG’ which are constant over a
single wedge, were.measured directly from the photographs. The triple
point trajectory angle, x, was measured with a protractor to an accuracy
of 30.5°. The velocities of the triple point and the foot of the Mach
stem were obtained by dividing their respective distances from the
leading edge of the wedge by the time passed from the moment the
incident shock wave collided with the leading edge of the wedge to the

moment the photograph was taken. This time was calculated from

Li
At -V.-
1

where Li is the horizontal distance of the incident shock wave from the
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- leading edge of the wedge and Vi is the velocity of the incident shock
\ wave. The velocity of the incident shock wave was measured by two pressure
transducers which were separated by 20 cm and were located just ahead of

the test section of the shock tube.

RESULTS AND DISCUSSION

In the following, the experimental results of the foregoing

described study are given for domains 3, 4 and 6 of figure 2. Note that

only the asymptotic wave configuration is given over the second surface.
The wave configurations which are obtained immediately after the reflec-
tion over the first surface interacts with the sudden change in the
o« slope of the surface, are discussed in detail in Ben-Dor et al. (1987).
Domain 3
Experiments with two double wedges which are appropriate to domain

3 of figure 2 were performed. The geometry of the first double wedge

was 9& = 40° and e; = 25° (Aew -15°). The incident shock wave Mach
number was Mi = 1.3.
The triple point trajectory angle x and its velocity in terms of

T = VT/ac, are shown in figure 6. The triple point

Mach number, M
trajectory angle over the first surface which has a slope of 40° is
X, = 1.2°,

After the Mach stem of the MR over the first surface passes the
leading edge of the second surface, the direction of propagation of the
triple point, i.e. 9; + X,, decreases continuously and approaches the
value appropriate to a MR with Hi = 1.3 over a single wedge with
v 9w = 25°, i.e., xs = 6.4°. The velocity of the triple point, MT' which

was 1.74 over the first surface is also seen to be decreasing

continuously and approaching asymptotically the value appropriate to a

MR A
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single wedge, i.e., M; = 1.523. The velocity of the foot of the Mach
stem MG = VG/ao, for this case is shown in figure 7. It is also seen to
decrease continuously from its value of 1.7 over the first surface
towards the value appropriate to a single wedge with ew = 25°, i.e.,

s

MG = 1.387.

At a distance of 18 cm from the leading edge of the double wedge
the triple point trajectory angle y and its velocity MThave almost
reached the values appropriate to a single wedge. However, MG is still
quite far from the asymptotic value it is assumed to reach at this
distance (x and MT are about 1.5% and 1% larger than the asymptotic
values, whereas MG is still about 4.5% too large).

An additional experiment with a double wedge also appropriate to
domain 3 of figure 2 is shown in figure 8. The geometry of the double
wedge is 6; = 35°, 6; = 15° (Aew = -20°) and the incident shock wave
Mach number is again Mi = 1.3,

The experimental results again indicate that after the MR over the
first surface passes the leading edge of the second surface the values
of x, MT and MG decrease towards the values appropriate to a single
wedge with an angle ew = 6;.

Unlike the previous case, here M. is seen to reach its predicted

G

asymptotic value at about x = 12 cm (x is measured from the leading edge

of the double wedge) while M., and y are still about 1.5% and 4.9% larger

T

than their assumed asymptotic value~., Note that the 0.5° error bar in

the measured value of y could have resulted in a different curve which
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would still agree with all the measurements but would resemble a faster
approach to the assumed asymptotic value. Such a curve is added to
figure 8 in a dotted line. It results in a value which is only about

2,8% higher than the assumed limit.

Domain 4

The experimental results over a double wedge with 9& = 60° and
82 = 30° (AGw = -30°) and an incident shock wave with M. = 1.3 are shown
in figure 9. The reflection process over this double wedge starts with
a RR over the first surface. When the reflection point of this RR
reaches the leading edge of the second surface (point B), MR begins and
a triple point forms.

The experimental results in figure 9 again indicate that y, MT and
MG approach asymptotically their assumed limiting values., At about x =
12 cm (x is again measured from the leading edge of the double wedge),
X, MG and MT are about 1.3%, 0.4% and 0.25% larger than their respective
asymptotic values. These small differences imply that the MR
configuration has glmost reached a configuration which would have been
obtained by an incident shock wave with Mi = 1,3 over a single wedge

with 8 = 30°.
w

Domain 6

Due to the complexity of the reflection process in this domain
compared to those presented earlier for domains 3 and 4 the experimental
results for this case are shown in a different way than those presented

earlier.
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Figure 10 shows the experimentally recorded trajectories of the
four triple points T,, T,, T, and T, of figure 5. The first triple
point, T,, is obtained when the incident shock wave with Mi = 1.3
reflects over the first surface which has an angleleé = 15°, The triple
point trajectory angle of T, is x, = 14.8°. When the Mach stem of this
MR collides with the leading edge, point B, of the second surface, which
has an angle 9; = 35°, it reflects over it as a secondary MR with triple
point T,. The experimental results indicate that unlike the trajectory
of T, which is straight, the trajectory of T, is curved. This is
probably due to the fact that the Mach stem (which serves as the
incident shock wave in the secondary MR, see figure 5) is not a straight
shock wave like the incident shock wave. Instead, it has a concave
curvature. If, however, the trajectory of the T, is approximated by a
straight line then it forms an angle, x,, of about 7° with the second
surface. When the two triple points, T, and T,, meet at point Q they
interact to result in two new triple points, T, and T,. T,, the triple
point of the MR of the incident shock wave over the second surface, is
seen to approach a direction which is parallel to the trajectory which
would have been obtained if an incident shock wave with Mi = 1.3 was
reflected over a wedge with ew = 35°, i.e., ¥ = 4°. This direction is
shown in figure 10 by a dash-dotted line. The trajectory of the triple
point T,, on the curved reflected shock wave, is also curved.

The evaluation of the velocity of T, resulted in M, = 1.659. The

T,

velocity of an appropriate triple point over a single wedge would be
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HT = 1,673. The difference, which is less than 1%, clearly suggests
that the triple point T, has almost reached the asymptotic value it is

assumed to reach. The velocities of T, andATz, i.e., MT and MT , are
3

b
1.479 and 1.650, respectively. It should also be noted that the
trajectory of T,, which as mentioned earlier is curved, is seen to
approach a straight line. The direction of this line with respect to
the x-axis is 62.9°,

Finally, it is of interest tn note that if one assumes that the
Mach stem of the MR of the incident shock wave is straight and
perpendicular to the wedge surface, then the location of point Q where
the trajectories of the first two triple points, T, and T,, intersect,

can be calculated analytically using the following geometrical

expression:

sin (Aew + X,)

AQ = L

- (1)
sin (Aew t X ~ X,)

where AQ is the distance from the leading edge of the double wedge,
point A, to point Q and L is the length of the first surface, i.e.,

L = AB.

Thus the location of Q in the (x,y)-plane is:

%q = AQ cos (82 + x,) (2a)

¥q = AQ sin (81 + x,) (2b)
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The analytical solution of the reflection at hand results in:

X, = 13.286° and y, = 7.028 (recall that the experimental results were
14.8° and 7°, respectively). Inserting these values into equation (1),
together with L = 72 mm yields AQ = 140.2 mm. Thus, from equation (2),
one obtains xQ = 123.4 mm and yQ = 66.4 mm. The corresponding measured
results as evaluated from the digitized data are 125 mm and 68 mm,
respectively. The comparison between these results suggests that
equations (1) and (2) could be used to predict quite accurately the
location of point Q where T, and T, meet.

It should also be mentioned that experiments with Mi = 1.3 were
repeated using the double wedge configuration at hand, i.e., 9; = 15°,
Aew = 20° and 6; = 35°, but with different values of L (L is the
distance from the leading edge of the first surface, point A, to the
leading edge of the second surface, point B). The experimentally

obtained location of point Q agreed with that predicted by equation (1)

and (2) to within 2.5% for all values of L in the range |\S< L < 72 mm.

Conclusions

The assumption that the MR of the incident shock wave over the
second surface of a double wedge approaches the MR which would have been
obtained by the same incident shock wave reflecting over a single wedge
with an angle Gw equal to the slope of the second surface of a double
wedge, i.e., e;, was investigated experimentally.

The experimental results clearly indicate that the assumption is
correct. The triple point velocity (including its direction of

propagation) and the velocity of the foot of the Mach stem of the MR
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are indeed found to apprbach the values appropriate to a reflection over
a gf‘a&g wedge. This behavior can undoubtedly be attributed to the fact
that shock wave stability is the governing mechanism of the phenomenon
at hand.

It is also interesting to note that the e#perimental results pre-
sented in figures 6-10 indicate that the relaxation length, (i.e., the
distance travelled by the incident shock wave over the second surface
until the asymptotic reflection is nearly obtained) is of the order of a
few lengths of the first surface of the double wedge. If the relaxation
length is defined as the distance at which the reflection has come to
within 5% of the asymptotic values, then the relaxation lengths of the
four cases presented in this study are about 1.25, 2, 3.5 and 1.5 times
fhe length of the first surface of the appropriate wedge.

As mentioned earlier, an experimental study aimed at investigating
the influence of the length of the first surface on the relaxation pro-
cess revealed that such an influence, if it exists, is minimal,

The present scudy was limited to cases where the reflection of the
incident shock wave over the first and second wedges were supposed to be
either regular or single-Mach reflection. For stronger incident shock
waves both complex and double-Mach reflections might be possible over the
two surfaces. This would undoubtedly complicate the reflection processes
and might also increase the relaxation lengths. However, it is hypothe-
sized here, that the final reflection over the second surface of a
double wedge will be that which would have been obtained over a single
wedge with the same incident shock wave, no matter if it is a single, a

complex or a double~Mach reflection.
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It should also be mentioned that the fact that the shock configu-
rationg which are approached asymptotically in the case of a reflection
over a double wedge. are similar to those which would have been obtained
by the samé incident shock wave over an appropyiate sin%}e wedge, does
not necessarily imply that the flow fields are also similar. This can
most easily be justified if one recalls the paper by Ben-Dor and Glass
(1978) where it was shown that different computer codes were capable of
resulting in almost identical wave configurations which differed very
much in their flow fields.

In summary, the present experimental study supports the shock
polar analysis which was presented by Ben-Dor et al. (1987) for study-

ing the reflection process over a double wedge.
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le sz a6, First surface Second surface | Region

> det > det - Regular Regular 2
Convex | € det < det - Mach Mach 3
4

> det < det - Regular Mach 4

> det > det - Regular Regular 1

< det > det > det Mach Regular+Regular S
Concave

< det < det < det Mach Mache+Mach 6

< det > det < det Mach Mach+Regular 7

Table 1

A summary of the seven different reflection processes which can occur over
convex and concave double wedges depending on the magnitu e of the wedge angles

0& . 9 and 46, compared to the detachment wedge angle @,

as 'de:' ubove). The numbers in the final column refer co the regions i{n the 8} w?

6 plane of figur01

(referred to :inply
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Figure 1: A schematical illustration of a double wedge: a) concave; b)

convex.
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Figure 2: Domains of different types of reflection processes over a

double wedge.




Figure 3: A schematical illustration of the reflection process in

domain 3 of figure 2.
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Figure 4: A schematical illustration of the reflection process in

domain 4 of figure 2.
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Fioure 1. Schematic illustration of (a) regular reflection, and (b) Mach reflection, i, incident shock
wave; r, reflected shock wave; m, Mach stem; o, slipstream; G, reflection point; T, triple point;
0, reflecting wedge angle; x, triple point trajectory angle; @, angle of incidence; 8, angle of
deflection; {(0)~(3), thermodynamic states.
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Fioune 2. (P,6) shock-polar solutions of (a) regular reflection (3, = 1.3,0, = 60°) and (b) Mach
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shocks which encounter the same incident flow in a pucudo-steady frame of reference.
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Fiaure 3. Regions of possible types of reflection in the (3}, 8, )-plane. M, is the incident-shock-wave
Mach number, 6, the reflecting wedge angle, and M the limiting Mach number separating weak
and strong shocks. For y =}, M? = 1.4585.




Fiaure 4. Two double wedge configurations, (a) concave and (b) convex. 8, is the first wedge angle,
Ad, the second wedge angle with respect to the first wedge, and 87, the second wedge angle.
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Fiaure 5. The seven regions in the (8}, 6%)-plane which identify the different reflection processes
of a shock wave over a double wedge. 8 is the first wedge angle, Ad,, the second wedge angle with
respect to the first wedge, 6% the second wedge angle, and 62 the detachment wedge angle
correaponding to the incident shock wave Mach number, M,. The reflection processes in each region
are given in table 1.
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Fiaure 6. Schematic illustration of the shock wave reflections over (a) the first and
(b) the second wedge for region 1 of figure 5.
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Fiauug 7. The shock-polar solution of the shock-wave reflection process for region 1. The polan
are drawn accurately for an incident shock with Mach number M, = 1.3, and 8 double concave
wedge with inclinations 6, = 47° and &, = 60°. /%, RS: and /S, R“: urv the incident und reflected
shock polars for the pueudo-steady regular reflections over the first and second wedgey, respectively.
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Ficure 8. The ratio, 3/ F,, of the pressures behind and ahead of the reflection point of a regular
reflection as a function of the reflecting wedge angle, 8, for an incident-shock-wave Mach number
M; = 1.3, calculated using two-shock theory.
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Fiaune 9. Schematic illustration of the shock-wave reflections over (a) the first and
(b) the second wedyge for region 2.
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Froure 10. The shock-polar solution of the shock-wave reflection process for region 2. The polars
are drawn accurately for an incident shock with Mach number M, = 1.3, and a double convex wedge
with inclinations 6%, = 60° and 6% = 47°. /%, R%: and 16+, R%+ are the incident and reflected shock
polars for the pseudo-steady regular reflections over the first and second wedges, respectively.
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Fioure 11. Subregions of the different regular to regular reflection processes in regions | and 2

In subregions 1a and 26 there will be & transition from high to fow pressure behind the reflected
shock (H - L), and in subregions 16 and 2a, a transition from low to high pressure (L—+H).
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Fiaune 12. Schematic illustration of the shock-wave reflection process for region 3. (a) Mach
reflection over the first wedge and (b) Mach reflection over the second wedge.
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Fioure 13. The shock-polar solution of the shock-wave reflection process in region 3. The polars
are drawn accurately for an incident shock with Mach number M| = 2.5, and a double convex wedge
with inclinations 8%, = 60° and 62, = 17°. /9, R®: and /%, RS are the incident and reflected shock
Xy = 8.27°. I RT» and I™, RT are the incident snd reflected shock polars for the pseudo-steady
Mach reflections over the first and second wedges, respectively. The polars are linked by a dashed
line representing the constant pressure of state (1) behind the incident shock.
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Fiourz 14. S8chematic illustration of the shock-wave reflection process for region 4. (a) Regular
reflection over the first wedge and (b) Mach reflection over the second wedge.
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Fiaure 15. The shock-polar solution of the shock-wave reflection process in region 4. The polurs
are drawn accurately for an incident shock with Mach number M, = 2.5, and a double convex wedge
with inclinations 8, = 60° and 6% = 40°. The triple-point trajectory angle over the second wedge
is y = 5.29° I°, R®and IT, RT are the incident and reflected shock polars for pseudo-steady regular
and Mach reflections respectively over the first and second wedges.




Fraune 16. Schematic illustration of the shock-wave reflection. procens for region 5. Q is the
intersection of the triple-point trajectory with the second wedge. (@) Mach reHection over the timst
wedge, () regular reflection over the second wedge und (c) the shock configurations after the
incident shock has passed Q.
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Figurg 17. The shock-polar solution of the shock-wave reflection process in region 5. The polars
are drawn acurately for an incident shock with Mach number M = 2.5, and a double concave wedge
with inclinations 8%, = 15° and 6% = 70°. The triple-point tﬂ;jectory angle is y = 15.72°, and the
Mach number of the Mach stem shock is M, = 2.8. IT and R7 are the incident and reflected shock
polars for the pseudo-steady Mach reflection over the first wedge. /61, R® and [%, RS are the
incident and reflected shock polars of the pseudo-steady regular reflections over the second wedge,
before and after the intersection of the triple-point trajectory with the second wedge, respectively.
The dashed I, R% polars indicate the probable solution for the regular reflection which permits
the pressure jump from state (4) to state (5) in figure 16. The polars are linked by the dashed lines
representing the constant pressure in states (3) and (1) of figure 16.
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Fioune 18. Schematic illustration of the shock-wave reflection process for region 6. (@) Mach
refiection over the firut wedge, (6) Mach reflection aver the second wedge and (¢} Mach reflection
over the second wedge after the incident shuck has pussed Q, the point of intersction of the two

triple-point trajectories.
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Fiaure 19. The shock-polar solution of the shock-wave reflection process in region 6. The polars
are drawn accurately for an incident shock with Mach number M, = 2.5, and for a double concave
wedge with inclinations 8, = 20° and &, = 40°. The Mach number of the Mach-stem shock over
the first wedge is M, = 2.9, and the triple-point trajectory angles are y, = 12.85°%, x, = 12.49° and
X3 = 5.29°. I™* and R™ are the incident and reflected shock polars of the pseudo-steady Mach
reflection over the first wedge. /7, R™* and 17, R™* are the incident and reflected shock polars of
the pseudo-steady Mach reflections over the second wedge, before and after the intersection of the
triple-point trajectories, respectively. The polars are linked by the dashed lines representing the
constant pressures in states (3) and (1) of figure 18.




Flaurk 20(a—c). For caption see fucing page.
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Flaure 20. Schematic illustration of the shock-wave reflection process for region 1. {a) Mach
reflection over the first wedge. (b)) Mach reflection over the second wedge. Q is the intersection of
the triple-point trajectories. (¢} Inverse-Mach reflection over the second wedge after the incident
shock has passed Q. (d) Regular reflection over the second wedge after the third triple point 7, has
reached the wedge surface.
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Fiouns 21. The shock-polar solution of the shock-wave reflection process in region 7. The polars
are drawn accurately for an incident shock with Mach numbers M, = 2.5, and a concave double
wedge with inclinations 8, = 30°, and 62, = 60°. The Mach number of the Mach-stem shock over
the first wedge is A, = 3.15, and the triple-point trajectory angles are y, = 8.27, y, = 8.08° and
X» = —1.12°. I and RT: are the shock polars for the pseudo-stationary Mach reflection over the
first wedge. /™%, RT* and I, R™* are the shock polars for the pseudo-steady Mach reflections over
the second wedge, before (direct-Mach) and after (inverse-Mach) the intersection of the triple-point
trajectories, respectively. /% and RS are the shock polars for the ultimate pseudo-steady regular
reflection over the second wedge. The dashed polar representa the probable solution for the normal
shock which permita the pressure jump from state (8) to (8) in figure 20(d). The polars are linked
by the dashed lines representing the constant pressures in states (1), (3) and (7) of figure 20.
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Fraurk 22. The sngle of the second wedge at which transition from regular to Mach reflection
- was observed, 0¥, as a function of A0, for a concave double wedge: (u) wesk shock wave
M, = 1.2010.01. (b) strong shock wave VW, = 2,45+ 0.01.
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Fiaure 23. The angle of the second wedge at which transition from regular to Mach reflection was
observed, 8, as a function of Ad,, for a convex double wedge and M, = 1.20+0.01.
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Fiourk 24. Actual regions and transition boundaries of the seven different reflection processes
for an incident shock wave with ), = 1.29 1+ 0.01 over a double wedge.




Fierire 25, Shadowgraph illustrating the retlection on the second wedge, Tollowing a regular
reflection on the tirst wedge for a doubde wedge in region 16} =

% amd 3 = T5°.
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Fievre 26. Schlieren photograph illustrating the retlection on the second wedge following a regular
reflection on the first wedge for a double wedge in region 2. 04 = 65° and 63 = 50°. Details of the
- wave strueture behind the second regular reflection can be seen.
-




Fiourk 27. Schlieren photograph illustrating the Mach reflection on the second wedge following
a Mach reflection on the first wedge for a double wedge in region 3. 6% = 35° and 6% = 15°. The
effects of the expansion wave generated when the Mach reflection moves from the tirst to the second
wedge can be seen.
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Ficrre 28, Shadowgraph of the Mach reflection on the second wedge. following a regular
reflection on the first wedge for a double wedge in region 4: 64 = 60° and ¢, = 30°.




Fiutre 2

Hea.b). For caption see faving page.




Fiavre 29, Shadowgraphs illustrating the retlection process over a double wedge in region 5.
0%, = 20°und 0% = 75° (a) Mach reflection over the tirst surface. (b) The retlection of the Much stem
as a regular reflection from the second surfuce. (¢) The wave structure immediately after the
interaction between the triple point of the Mach retlection and the retfection point of the regular
retlection. (d) The tinal regular retlection over the second surface followed by aregular retlection
of the reflected shock of the Mach retlection which was terminated carlier. (¢) The degeneration

of the secondary regular reflection into s normal shock wave,




“Shadowgraphs illusteating the reflection pro bss over o double wedge in region 6.
13°%. () The reflection of the Mach stedd from the fiest wedge over the second
twot ’|n|:- points. {¢) ‘The tinal Mach rellection

Fisenre 30,
0% = 15° und 0% = 35
surfuce as o Mach reflection. (b) The interaction of the

over the second welge surfuce.




Fietre 31, Shadowgraphs illustrating the retlection process over w double wedge in region 7.
O, = 25° and U4 = G0° (1) The reflection of the Mach stem from the fiest wedge over the second
surfiee as o Mach retlection. (0) The tinnd reticetion over the s)oeond surface followed by a normal
shock wave,




Part 2

The Wave Configuration Approached Asymptotically Following a
Reflection of a Plane Shock Wave Over a Double Wedge

Experimental Investigation




INTRODUCTION

When a planar ghock wave encounters a sharp compressive corner, such as the
leading edge of a wedge, two different types of reflection may occur: regular
reflection RR (figure la) or Mach reflection MR (figure lb). Regular reflection
consists of two shock waves, the incident shock 1 and the reflected shock r,
which coincide on the wedge at the reflection point G. Mach reflection consists
of four discontinuities, the incident shock i, the reflected shock r, the Mach
stem m and the slipstream s, which coincide at the triple point T. Over a plane
wedge the triple point moves along a straight line waking an angle y with the
wedge surface. The Mach stem is usually curved.

For a given gas, the type of reflection which will occur depends on the
strength of the incident ghock, defined by the Mach number Hi’ and on the wedge
angle Bw.

If a frame of reference is attached to the reflection point of a regular
reflection or the triple point of a Mach reflection, then the nonstationary
regular or Mach reflection becomes pseudo-steady (Jones, Martin & Thornhill
1951), and the shock waves {, r and m can be treated using steady flow theory.
By considering these shock waves separately and using oblique shock wave
relations with appropriate boundary conditions the equations of motion for
regular and Mach reflection can be derived (Ben-Dor, 1978).

In the case of an inviecid regular reflection (figure la) when the frame of

reference {s attached to the reflection point, the flow in state (0) moves
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towards the reflection in a direction parallel to the wedge surface and at an
angle of incidence ¢; to the incident shock. On passing through the incideant
shock wave the flow is deflected towards the wedge surface by an angle el. The
flow then passes through the reflected shock wave which deflects it back by an
angle O, to become again parallel to the wedge surface. Therefore, the boundary
condition for a regular reflection is:

8, -9, =0 (1)

Thus the flow directions in states (0), (1) and (2) with respect to the
trajectory of the reflection point, G, are:

6 =0, 5 =0, and 6 =6, - 8, = 0, 2)
respectively, wvhere superscript G designates that © i{s measured with respect to
the direction defined by the trajectory of G.

In the case of Mach reflection (figure 1lb) when the frame of reference is
attached to the triple point T, the flow in state (0) moves towards the
reflection in a direction parallel to the triple point trajectory. The flow
above the triple point trajectory approaches the incident shock wave at an angle
of incidence ¢,. On passing through the incident shock the flow is deflected
tovards the wedge by an angle 6,. It then passes through the reflected shock
which deflects it back by an angle O,, parallel to the slipstream. Below the
triple point trajectory the flow approaches the Mach stem at an angle of
incidence ¢;, and is deflected towards the wedge by an angle O3, also parallel to
the slipestream. Since the flows in states (2) and (3) are parallel and separated
by a slipstream across which there is no change of static pressure, the boundary
conditions for the Mach reflection are:

61 - 92 - 93. and Pz - P3, (3)
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vhere P is the static pressure. Thus the flow directions in states (0), (1),
(2), and (3) with respect to the trajectory of the triple point, T, are:
Op = 0; 6] =03 (4)
03 =6, - 6,, and 6] = 0.
Equations (3) and (4) give;
63 = 05- ()

Kavamura & Saito (1956) suggested that, since the boundary conditions (1) and
(3) are in terms of the flow deflection angles, 6, and pressures, P, the
relationship between P and O may be of importance in understanding shock
reflection phenomena. The graphical representation of the relationship between
the pressure ratio, P/P,, across an oblique shock and the angle, 6, through which
the flow is deflected by the shock for a fixed value of the Mach number of the
incident flow, M;, is called a pressure-deflection shock polar.

Figure 2a represents the (P, 0) polar solution of a regular reflection. All
the flow deflection angles, ec, are measured with respect to the trajectory of
the reflection point G (see figure la). State (0) is represented by the origin,
where P = P, and Gg = 0. The locus of all the flow states which can be obtained
from state (0) by passing through any oblique shock wave is represented by the I
polar. Consequently, state (1) of a regular reflection is represented on the I
polar by the point P = P, and OG - 6?. The R polar 1s the locus of all the flow
states which can be obtained from state (1) by passing through any oblique shock.
Consequently, state (2) which 1s obtained from state (1) by passing through the
reflected shock wave 18 on the R polar. The boundary condition (2) implies that
Gg = 0, therefore, state (2) is represented by the point where the R polar

intersects the P axis (1i.e. GG = 0) as illustrated in figure 2a.
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Figure 2b represents the (P, 6) polar solution of a Mach reflection. All the
deflection angles are measured with respect to the trajectory of the triple point
(see figure 1b). Again, state (1) behind the incident shock lies on the I polar
and is the origin of the R polar, and state (2), behind the reflected shock lies
on the R polar. State (3) behind the Mach stem also lies on the I polar. Since
the pressures and the flow directions with respect to the triple point trajectory
in states (2) and (3) are equal, states (2) and (3) are represented by the
intersection of the I and R polars.

Figure 3 illustrates the regions in the (“1’ ev) plane in which the
different types of reflection are possible or impossible. The regions are
separated by curves A and B. Curve A describes the "detachment" criterion of von
‘Neumann (1963), and curve B the "mechanical equilibrium™ criterion of Henderson &
Lozzi (1975). Hornung, Oertel and Sandeman (1979) used a "corner signal” concept
to show that transition from regular to Mach reflection is best defined by the
“sonic” criterion, namely the condition when the signal speed behind the
reflected shock equals that of the reflection point. The “sonic” criterion is
very close to the detachment criterion, particularly for strong shocks.

For a given gas (i.e., value of the specific heat ratio, y) there 18 a
certain value of incident shock Mach number, MI, below which the "mechanical
equilibrium” criterion does not exist. Henderson & Woolmington (1983) have shown
that for a diatomic gas, v = 7/5, H: = 1.4565 and for a monatomic gas, y = 5/3,
M: = 1.5487. 1Incident shock waves with Mach numbers in the range H1< H: are
called weak shocks and those in the range H1> M: are called strong shocks.

Figure 3 indicates that for weak shocks there is one region in which regular
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reflection is theoretically impossible (Bv < e:ec) and another region in which

:et). The regions are

Mach reflection is theoretically impossible (8w> 6
separated by the detachment transition line ew- G:et.' However, for the strong

shocks there i8 a region, 9v< O:et, in which regular reflection is theoretically

Moo

impossible; a region , 6w> 6' » in which Mach reflection is theoretically

edet

MeCo
v < 9w< ew , 1n which both regular and

impossible, and an additional region,
Mach reflection are theoretically possible. Dewey and McMillin (1985) have shown
that the assumption of pseudo-gtationarity may not be valid for weak Mach
reflections and that realistic shock polars cannot be drawn for this region.

In the case of truly unsteady flows, i.e., flows which cannot be made
pseudo-steady by a simple co-ordinate transformation, the wedge angle at which
transition from regular to Mach reflection occurs depends on the geometry of the
process itself. For example, the MR+RR transition over concave cylinders occurs
at wedge angles greater than those predicted by the "mechanical equilibrium”
transition line, and the RR+MR transition over convex cylinders occurs at wedge
angles smaller than those predicted by the “detachment” transition line. For
both cases the transition angle also depends on the initial angle of incidence
and the radius of curvature of the cylindrical wedges. Details of these
reflection phenomena are described by Heilig (1969), Ben-Dor, Takayama & Kawauchi
(1980), Itoh, Okazakli & Itaya (1981) and Dewey, Walker, Lock & Scotten (1983).

To the best of our knowledge, no shock wave phenomenon has been recorded yet, in

which the RR*MR transition occurs at wedge angles in the range e:et< 9:r< Bs'e'.
A suggested approach to the study of shock wave reflections from concave and

convex cylindrical surfaces 13 a consideration of the reflection from a double
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wedge with a single increase or decrease of the wedge angle. In the present
paper, seven different shock configurations resulting from the reflection of a
planar shock wave over a concave or a convex double wedge are identified and
investigated analytically and experimentally.

A study of the reflection process over three of the seven possible double
wedge combinations was conducted by Ginzburg & Markov (1975). However, it will
be shown that some of the schematic drawings in their paper, i1llustrating the
wave configurations, are incorrect. This is probably due to the poor resolution
of their photographic method. Some of their schematic drawings show confluence
points of four shocks, which are known to be theoretically impossible (Courant &
Friedrichs, 1948), and others fail to observe the details of the waves
‘structure.

' Two of the poesible Mach configurations over a concave double wedge have
been studied by Matsuo et al (1985) and their observations appear to be in

agreement with the results presented here.

Analzsis

The analysis presented below establishes all the reflection processes and
final shock configurations that are possible over any double plane wedge
combination. A compressive and an expansive double wedge are illustrated in
figures 4(a) and 4(b), respectively. The slopes of the first and second wedges
are 9: & 03, respectively, and the slope of the second wedge with respect to the
first 1s

e a2 = gl
se, = 62 = ol . (6)

The reflection over a double wedge depends on three parameters: the
incident shock wave Mach number Mi’ and the first and second wedge angles eb and
62,
w

In the following analysis it will be assumed that:
1) the flow is two dimensional;
2) the gas 1is perfect (p = pRT) and ideal (p = 0, k = 0);

3) the flow over the first wedge 1is pseudo-steady;
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4) the flow over the second wedge aymptotically approaches a pseudo-steady
situation;
5) the regular ¥ Mach reflection transition follows the "detachment” criterion,
and
6) the incident shock waves are weak enough so that 1f the reflection over the
first wedge 18 a Mach type reflection, it is a single-Mach reflection.
Further assumptions concerning the Mach stems are given subsequently.
For a given shock wave Mach number there is an appropriate “"detachment”
wedge angle, e:et. If Gé < e:et the shock wave reflects from the first wedge as

t it reflects over the first wedge as a regular

a Mach reflection, and if 6: > O:e
reflection. The Mach or the regular reflection propagates up the wedge until it
encounterg the leading edge of the second wedge. If the incident shock wave has
reflected as a Mach reflection over the first wedge, then the Mach stem of this
reflection encounters the second wedge and reflects from it either as a Mach or
as a regular reflection depending upon the size of the differential wedge angle,
Aew‘ and the Mach number of the Mach stem, Hm.

In the following analysis it will be assumed that the Mach stem is straight

and perpendicular to the wedge surface so that

cos Y1
M =M )

L 1
cos (Bw + 1)

where x) 1is the first triple point trajectory angle [Ben-Dor 1980].
Thus Mm > Mi’ but the difference in Mach number is not large and {t will

therefore be assumed that
edet _ edet (8)

w ~ W
Hm Hi

For example, for M - 2.5 and O: = 20° the Mach reflection solution results in
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X; = 12.88°, thus Hm = 2,902. The corresponding detachment wedge angles for
Hi and H‘ are 50.77° and 50.72°, respectively. Similarly, for M, = 1.775 and
93 = 20° , one obtains Y} = 16.17° and Hﬂ = 2.112. For this case the
corresponding detachment wedge angles are 50.22 and 50.68. These two examples
indicate that although the difference between the incident shock wave Mach number
and the Mach stem Mach number ies about 15Z, the difference in the detachment
angle for these shocks is only a fraction of a degree. Using the assumption of
(8), it may be concluded that the Mach stem of the first Mach reflection reflects
from the second wedge as a Mach reflection if, Aev < Gset, and as a regular

reflection 1f A8 > Gdet.
v v

The 1lines 01 = 69°F, o2 - odet, Ao, = 0 and a0 = gdet

are all drawn 1in the
(6&, 65)’p1ane shown in figure 5. These boundary lines define seven regions with
different reflection processea. Those regions above the diagonal, AGw = 0, are
for a concave double wedge, and those below the diagonal are for a convex wedge.
The reflection process in each region and a shock polar solution which gives
information about the pressure changes produced by the reflection process are

presented, beginning with the simplest case and ending with the most

complicated.

The input data for the analysis were the incident shock wave Mach number, Hi
and the double wedge geometry, 63 and Aew' The analysis used the two-shock and
the three-shock theories of von Neumann (}963) to determine the shock wave angles
and the thermodynamic properties behind the shocks for each reflection. The flow
properties obtained from the solution were used to draw the shock-polars shown

subgsequently, which are accurately drawn to scale.
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Region 1

In this region Aev >0 ; 6‘1' > Gdet

v and 93 > e:ec’ and the reflection

process is shown schematically in figure 6, with regvlar reflection over both
wedges, but with different wave angles. The regular reflections can be
congidered by attaching frames of reference to the reflection points G1 or G,, as
appropriate.

In order to combine the shock polars of the two regular reflections on a
single plot in the (P, ecl) plane it is necessary to know the direction of G,
with resp~ct to G), namely:

o(G,, G;) = 93 - e}’ = 86, (9)

A shock polar solution for a typical reflection process in region 1 is shown
in figure 7 for initial conditions of Mi = 1.3, GL = 47° and Aev = 13°,

The IGl and Rpl polars represent the regular reflection over the first wedge.
Since the golution of the reflection over the second wedge is in a frame of
reference rotated by the angle 8(G,, G,) with respect to the original frame of
reference, the origin of the Ic2 and 892 shock polars combination 1s located at
€l = 0(G,, G}) = 40 ,. Since 63 > eb, the velocity of G, is greater than that of
Gy, and so tﬁe Ic2 polar is larger than the Icl polar. The pressure behind the
incident shock is the same for both reflections and so the points representing
state (1), 1.e., the origins of the Rcl and Rc2 polars, have the same ordinates
in the (P, Bcl) plane.

The pressure P, in state (2) behind the reflected shock over the first wedge
is given b& thé intersection of the RGl p;lar with the pressure axis, i.e. point
(2) in figure 7, and the pressure P, in state (3) behind the reflected shock over
the second wedge 1s given by the intersection of the RG2 polar with the AOH
ordinate, {.e., point (3). 1In general P, # P,, and as the incident shock moves

from the first to the second wedge there will be a sudden change of pressure.
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According to Henderson & Lozzi (1975), "If a pressure discontinuity occura
during transition then an unsteady wave of finite amplitude or a finite amplitude
band of waves will be generated in the flow™. We may therefore expect that the
reflection point on the second wedge will be followed by either compression waves
(or a shock wave) or expansion waves depending upon whether the transition causes
a sudden pressure decrease or increase.

Figure 8 gshows the theoretical pressure ratio behind the reflection point of
a regular reflection as a function of the reflecting wedge angle eu for a given
incident ghock Mach number Mi = 1.3. The pressure ratio P2/Po goes through a
ainimum at about Gw = 60°. Consequently, in the double wedge reflection process
now belng considered three pressure change behaviours are possible. 1If, in the

example for M, = 1.3, e: = 50° and 63 = 60° then at transition from the first to

i
the second wedge the pressure behind the reflection point suddenly drops.
However, {f Q: = 60° and 65 = 85° then at transition the pressure behind the
reflection point suddenly increases. There could also be a case for which there
is no pressure change at transition e.g., 63 = 55° and 65 = 65.775°. Thus,
different flow patterns are to be expected behind the second reflection point
according to these different pressure changes.
Region 2

In this region Aew < 0; 6: > e:et. and 93 > G:et, and the reflection process
is shown schematically in figure 9. The reflection is regular over both wedges,
and can be made pseudo~stationary by attaching frames of reference to the points
of reflection G1 and 62. The direction of the second reflection point 62 with
respect to that of the first, G;, is given by

6 (G, G)) = 40, (10)
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and for a convex double wedge AGV is negative.

A shock polar solution for a typical reflection process in region 2 is shown
in figure 10, for M = 1.3, 0& = 60° and 46 = -13°.

The Icl, %1 and Icz, g2 polars represent the solutions of the regular
reflectiona over the first and second wedges, respectively, with the origin of
Icz shifted by Ae' in the (P, ecl) plane so that the Ic2 and Rc2 polars are now
to the left of the 1 and Rcl polars. The pressure in state (1), behind the
incident shock is tdentical for both frames of reference, and the two-shock-polar
combinations are bridged by the constant pressure line P which is dashed in
figure 10.

The velocity of G, is greater than that of G, and so in the pseudo-steady
frames of reference the velocity of the incident flow over the first wedge, Hgl,
is greater than that over the second, HSZ. Therefore, the IGl polar is larger
than the IGz polar. The polars again indicate that, in general, the pressure
'behind the reflected shock over the first wedge, P2, will be different from the
pressure behind the reflected shock over the second wedge, P;, which should
therefore be followed by either compression or expansion waves depending upon
whether the pressure suddenly decreases or increases at transition from the firet
to the second wedge.

Figure 11 1s an enlarged drawing of regions 1 and 2 of figure 5. The added
dashed line divides each region into two subregions 1 a&b and 2 a&b. In
subregions la and 2b the reflection process involves a transition from a high
pressure regular reflection to a low pressure regular reflection (H + L) while {n
1b and 2a, the transition is from a low pressure regular to a high pressure
regular reflectifon (L + H). Therefore in subregions la and 2. it is expected
that the reflection over the second wedge will be followed by a shock or

compression wave, while in subregions 1b and 2a the second reflection is expected
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to be followed by an expansion wave. It i8 of interest to note that in region la
the pressure behind the reflected shock may be expected to drop as the shock

passes a compressive corner and in region 2a the pressure may be expected to

increase around an expansive cormer.

Region 3
1 det 2 det
In this region ABV < 0; Gw < Ow , and ew < ew , and the reflection process

is shown schematically in figure 12. There is a Mach reflection over both
wedges, but with different wave angles, and a non-stationary transition region.
The initial and final Mach reflections can be made pseudo~stationary by attaching
frames of reference to the triple points T and T,. The direction of T2 with
respect to the direction of the Tl’ is given by

6 (T, T)) = = (- 80, + ¥ - X3)s (11)
where X; and X, are the triple point trajectory angles with respect to the two
wedges.

A shock polar solution for a typical reflection process in region 3 is shown
in figure 13. The incident shock wave Mach number is Mi = 2.5. It initially
reflecrs as a Mach reflection over the first wedge for which G: = 40° and X -
5.29°, AOV- -10° and the Mach reflection over the second wedge for which 63 =
30°, has a triple point trajectory angle X, = 8.27°.

The IT2 and RT2 polars are plotted in the (P, OTl) plane, with the origin of
the IT2 polar displaced by (AGu -x t xz). Since the inclination of the second
triple point trajectory is less than that of the first, the velocity of T, 18
less than that of T; and the Mach number of the incident flow in the
pseudo-steady frame of reference, ng will be less than that over the first
wedge, Mgl. The IT2 polar 1s therefore smaller than the ITl polar. The two
polars are again related by the pressure P; behind the incident shock, shown as a

dashed 1line in the figure. Tt can be seen that the pressure behind the Mach stem
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over the second wedge, Pg, will be less than the pressure behind the Mach stea
over the first wedge, P;. Because the signal speed, i.e. the sound speed plus
the particle velocity behind the Mach stem is greater than the speed of the Mach
stem, any compression waves will overtake the Mach stem. It is expected,
therefore, that after transition from the first to the second wedge, the Mach
stea shock initially will be stronger than that produced by an incident shock

reflection from a single wedge with an inclination 93, but will asymptotically

approach that value.

Region 4
. 1 det 2 det
In this region Aew < 0; ev > Gw , and Bw < 6" ,» and the reflection process

is shown schematically in figure l4. The incident shock reflects over the first
wedge as a regular reflection (figure l4a) and vrpon encountering the second wedge
there is a transition to a Mach reflection (figure 14b). The initial and final
reflections can be made pseudo-stationary by attaching a frame of reference
respectively to the reflectfon point G, or the triple point T.
The direction of the triple point T with respect to that of the reflection
point G is given by
6 (T, G) = - (-~ 89, = x) (12)
A shock polar solution for a typical reflection process in region 4 is shown
in figure 15. The incident ghock wave (M1 = 2,5) reflects over the first wedge
(6: = 60°) as a regular reflection. However, since Aew = -20°, the second wedge,
65 = 40°, cannot support a regular reflection, and a Mach reflection with y =
5.29° {s finally established over {t.
The Ic and RG shock polars represent the regular reflection over the first
wedge, and the origin of the ‘1'r and RT shock polars, which represent the Mach

reflection over the second wedge, are displaced by (Aew + x), which 1s negative.
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The constant pressure P) behind the incident shock again bridges the two sets of
polars. For this cage the velocity of G is greater than that of T so that Hg is
greater than Hg and the IG polar is larger than IT poiar.

In general the pressure P, behind the reflected shock over the first wedge
will be different from the pressure P, behind the Mach stem over the second
wedge. A transition period is expected after the incident shock moves from the
first to the second wedge with expansion nr compression waves which will
dissipate through the flow. It is not ¢._acted that these waves will persist as
is predicted for the reflections in regions 1 and 2, and the Mach reflection over
the second wedge will asymptotically approach that which would be produced if the

incident shock had reflected from a single wedge with an inclination 93.

Region 5
. det, det det
In this region AG“ > 0; 93 < ew : Aev > 6, » and 93 > 6, » and the

reflection process is shown schematically in figure 16. The incident shock
reflects over the first wedge as a Mach reflection (figure 16a). The Mach stem
of this reflectfon reflects from the second wedge as a regular reflection (figure
16b). The triple point T and the reflection point G, of the Mach and regular
reflections interact at point Q on the second wedge surface to form a new regular
reflection, with reflection point G, (figure 16¢c).

The reflections can be made pseudo-stationary by attaching frames of
reference to the triple point T, or the points of reflection G, and G,, as
appropriate. The direction of the reflection points Gl ard 02 with respect to
the direction of the triple point T are given by

e (G,, T) = Aev - x , and (13)

0 (G, T) = 80, = X (14)
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A shock polar solution for a typcial reflec;ion process in region 5 18 shown
in figure 17. The incident shock wave (H1 = 2.5) reflects over the first wedge
(G: = 15°) as a Mach reflection with XY = 15.72°. The Mach number of the Mach
stem of this reflection is ﬁm = 2,8. Since Aew = 55°, the Mach stem reflects
over the second wedge as a regular reflection. Finally, the incident shock wave
(H1 = 2.5) encounters the second wedge (ei = 70°) from which it reflects
regularly.

The IT and R? shock-polars repregsent the Mach reflection solution over the
first wedge. Since the solutions of the two regular reflections over the second
vedge are wmade from a frame of reference which 1is displaced by the angle
@ (5;, T) or 6 (G,, T) with respect to the original frame of reference, the
origins of the Icl, R®land the IGZ, R%2 ghock polars, which represent the
regular reflections over the second wedge are located at GT = e(cl,r) - G(GZ.T) =
Aev- X+« Since the pressures in states (1) and (3) are independent of the frame

of reference from which the gsolution 18 carried out, the IT, RT and Icl, Rcl

shock polars are bridged by the comnstant P; line, and the IT, RT and Ic2, R

G,
shock polars are bridged by the constant P| line, which are dashed in figure 17.

| The shock polars in Figure 17 indicate that the transition on the second
wedge at point Q is associated with a sudden decrease in the pressure from P,
behind G, to Pg behind G,. It will be shown subsequently that this sudden
pressure drop is supported by an additional regular reflection, that of the
reflected shock wave of the Mach reflection over the first wedge. This secondary
regular reflections follows the main regular reflection over the second wedge.
This additional regular reflection is drawn schematically in figure l6c with

reflection point G;. It 18 expected that the overall pressure jump across this
3

additional regular reflection should be close to P“/PS. A dashed Ic3, Rc3 polar
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combination representing this regular reflection is added to figure 17.
It will be shown subsequently that as this secondary regular reflection
propagates up the wedge its reflected shock catches up with its incident shock

to finally form a single shock wave normal to the wedge surface.

Region 6

In this region A6 _ > O; ol <« Gdet; A8 < Odet, and 62 < edet
U v v v v W

v and the

reflection process is shown schematically in figure 18. The incident shock
reflects over the first wedge as a Mach reflection (figure 18a), and the Mach
stem of this reflection reflects from the second wedge also as a Mach reflection
(figure 18b). The triple points T, and T, of these two Mach reflectious,
intersect at Q to form a direct Mach reflection (figure 18c), for which the
triple point moves away from the second wedge surface. Therefore, the Mach
reflection is maintained. It {s assumed that these three Mach reflections can be
made pseudo-stationary by attaching frames of reference to their appropriate
triple points. The directions of T, and T, with respect to the direction of T,
are given by

8 (T,, T|) = AGH X "X (15)
and,

6 (T3, T;) = 86, + x3 - x) (16)

A shock polar solution for a typical reflection process in region 6 is shown

in figure 19. The incident shock wave (Mi = 2.5) reflects over the first wedge
(e: = 20°) as a Mach reflection with y; = 12.85°. The Mach number of the Mach

stem of this reflection is Hm = 2,9. Since AGw = 20°, the Mach stem r flects
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over the second wedge as a Mach reflection with X, = 12.42°., Finally, after the
interaction between the two triple points, at Q, the incident shock wave (H1 -

2.5) forms a Mach reflection over the second wedge (63 = 40°) with x3 = 5.29°.

The frl and R?l polars represent the Mach reflection over the first wedge
and the origing of the IT2, R'2 and IT3, R3 polars, for the second and third
Mach reflections are located at eTl =0 (Ty, T}) and eTl = o(T3, Ty)
respectively. Since.the pressures in states (1) and (3) are independent of the
frame of reference, the ITl, RTL and IT2, R'2 polars are bridged by the constant
P; line, and the Irl. R'! and IT3, RT3 polars are bridged by the constant P,
line, which are dashed in figure 19.

The changes of pressure along the wedge from P; to P, at the time when the
triple points T; and T, interact at Q and form the third Mach reflection with a

different Mach stem, will result in the generation of compression or expansion

waves but these are expected to dissipate in the flow and not to persist as in

regions 1 and 2.

Region 7

det det det
. gl . 2
In this region AGH > 0 GH < Gw H AOw < ev , and eu >0

v and the

reflection process is shown schematically in figure 20. The incident shock
reflects over the first wedge as a Mach reflection (figure 20a), and the Mach
stem reflects from the second wedge also as a Mach reflection (figure 20b). The
triple points T, and T, intersect at Q to form a third Mach reflection (figure
20c). Unlike the reflection in region 6, the new triple point T, moves towards

the second wedge surface, i.e., the Mach reflection is an inverse-Mach reflection
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(Takayana & Ben-Dor (1985)). Upon colliding with the wedge surface, the
invergse-Mach reflection transitions to a regular reflection, which continues to
propagate up the wedge (figure 20d).
It 18 assumed that the three Mach reflections and the final regular
reflection can be made pseudo-stationary by attaching a frame of reference to the
appropriate triple points T;, T, or Ty, or the reflection point G. The

directions of T,, Ty and G with respect to the direction of Tl are given by

8 (Ty, T)) = Aew + %X - X3 Qan
8 (T3, Ty) = - (- 46, + x3 + 1), (18)

A shock polar solution for a typical reflection process in region 7 {s shown
in figure 21. The incident shock (H1 w 2.5) reflects over the first wedge
(9: = 30°) as a Mach reflection with x; = 8.27°. Since AGU = 30°, the Mach stem
(Hn = 3.15) reflects over the second wedge as a Mach reflection with y,= 8.09°.
Eventually, the two triple points intersect at Q and the incident sghock
(H1 = 2.5) propagates over the secondary wedge (93 = 60°) from which it reflects
regularly.

The ITl, Rl shock polars represent the Mach reflection solution over the
first wedge, and the origins of the IT2, R°2 and IT3, 3?3 shock polars, which
represent the second and the third Mach reflections are located at eTl =08 (T,,
T,) and oTl = 6(Ty, T;), respectively. Since the pressures in states (1) and

(3) are independent of the frames of reference, the ITl, RTl and IT2, RT2 shock

polars are bridged by the constant P; line, and the ITI, RTl and IT3, RT3 shock
polars are bridged by the constant P, line. Since the third Mach reflection 1is
an inverse-Mach reflection, its polar solutfon (states 6 & 7) takes place on the

left part of the IT3 polar (for details see Takayama & Ben-Dor 1985). For

clarity, parts of the IT3 polar have been omitted from figure 21.
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The origin for the final regular reflection is at eTl = 9 (G, T;). The Ic,

Rc polar combination which represents the regular reflection is also bridged to
the ITl, R'1 polars through the constant P, line.

The shock polars in figure 21 suggest that a sudden pressure drop will occur
from P; just before the termination of the inverse-Mach reflection, to Pg, just
after the formation of the regular reflection. It was found experimentally that,
unlike the case, in region 5, where the sudden pressure drop ies supported by a
secondary regular reflection (figure 16c), here it is supported by a normal shock
wave which follows the regular reflection. This unormal shock wave 1s shown in
figure 20d. It is expected that the pressure jump across this normal shock wave
should be close to P5/P8. A dashed polar representing this normal shock wave 1is
added to figure 21. 1In figure 20 the state behind the normal shock wave 1s
labled as state (9), and hence the pressure jump across it 1is Pg/PB, however

states (9) and (6) and states (6) and (7) are separated by slip-streams and hence

P7 - P9'

Experimental Investigations

The reflection of plane shock waves from concave and convex double wedges
was studied experimentally using the 7.6 cmx25.4 cm shock tube of the Department
of Physics at the Universfity of Victorifa, Canada, and the 7.6 cmx12.7 cm shock
tube of the Institute of High Speed Mechanics, Toboku University, Japan. The
objectives of the experimental gstudies were to establish the conditions for
transition from regular to Mach reflection or Mach to regular .eflection
(RR b4 MR) for concave and convex double wedges; to verify the existence of the
seven reflection proceasses predicted in the foregoing analysis, and to verify the

predictions of the shock polar analysis concerning the wave configurations
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following the major reflections. These objectives were achieved usirg various
high speed photographic techniques such as contact shadowgraphs, multi-frame
schlieren and holographic interferometry.

RR b4 MR transition wedge angle

Using nominal incident shock Mach numbers of 1.3 and 2.45, the angle of the
second wedge at which RR bV occured, was determined. Experiments were
conducted using double wedges, similar to those shown in figure 4. Depending
upon the final reflection which was observed over the second surface, the second
wedge angle, 93, was increased or decieased by tilting the double wedge until
the reflection over the second surface changed from MR to RR or from RR to MR,

The lowest value of 63 for which RR was observed, and the highest value of
9: for which MR was observed were averaged to give an estimate of 6:r and the
agssociated uncertainty.

In the "weak”™ shock experiments there were small varifations in the incident
shock Mach number from experiment to experiment but all were in the range 1.28
M, < 1.30. The theoretical detachment tra-sition wedge angle for this range of

i
o det ° tr
Mach numbe s 18 45.899° < 6 "< 46.347°. The wedge angles, ew , at which

w
transition was observed on the second wedge are plotted as a function of Aev for
a concave double wedge in figure 22a. At Aew = 0, {.e., the case of a straight
single wedge, the measured value of Git 's about 1.5° smaller than the
theoretical detachment value. This observation is in accordance with
experimental results of many other investigators and is probably due to boundary
layer effects. The same value 1s obtained at AGH = 44.5° which again represents

the case of single straight wedge, since for this case eb = 0.

For the specific incident shock Mach number of these experiments,
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Hi = 1.29 ¢t 0.01, the transition angle, G:r reaches a maximum of approximately
49.5° for a double wedge with a6 = 25°. It 1s interesting to note that in the
range 0 < Aev < 25° there appears to be a linear relationship between 95' and
Aew. The overall relationship between Ozr and AOw for a concave double wedge may
be compared with that between O:r and R, the radius of curvature of a concave
cylindrical wedge for which the transition angle is also greater than that over a
single plane wedge (Ben-Dor, Takayama & Kawauchi 1980).

The measured transition wedge angles for a strong shock wave (Hi > H:) over
a concave double wedge are shown in figure 22b. For these cases Mi = 2.45 ¢
0.01. The transition wedge angles for 46 = 0 and A6 = 49° which rorrespond to
a single straight wedge are about 1.7° below the value predicted by the
"detachment” criterion (6:et = 50,77°). This persistence is probably due to
boundary layer effects. As ABw increases the transition wedge angle becomes
higher until it reaches a maximum of 9:r = 59.5° at Aew = 30°. This value of
O:ris greater than the "mechanical-equilibrium” transition wedge angle for this
Mach number (9:’e'- 58°). PFor Aew > 30° the transition wedge angle decreases
until it reaches the value appropriate to a single wedge at Ae" = 49°. It should
be noted that for this case of a strong incident shock wave the transition wedge
angles lie between the "detachment™ and the "mechanical-equilibrium™ transition
wedge angles. To the best of our knowledge this is the first time that the RR p
MR transition has been observed in this range of wedge angle.

Figure 23 shows the observed transition wedge angles, a:'. as a function of
Aew for a convex double wedge and an incident shock Mach number of 1.29 + .01 .
In this case ABw = 0 corresponds to the single wedge case with 95' = 44.,5°, For
decreasing values of Aew the transition angle decreased to a minimum of about

43.25° for Aew in the range from -20° to -35°, and then returned to 44.5° at
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Aeg = - 45.5°, which also corresponds to a single straight wedge. The variation
of O:r with Aev over a convex double wedge may be compared with the varfiation of
t

Qwr with the radius of curvature of a convex cylindet'for which the observed

transition angle i{s also less than the theoretical detachment angle, e:et. and
the observed transition angle on a straight wedge (Ben-Dor, Takayama & Kawauchi
1980).

The observed transition wedge angles presented in figures 22a and 23 were

used to modify the boundaries between regions 6 and 7, and 2 and 4 in figure 5,

and the modification is presented as figure 24.

Experimental Verification of the Reflection Processes

Experiments were carried out using combinations of wedge angles
representative of each of the seven regions defined by figure 24, using a noaminal
incident shock Mach number of 1.3. The shock reflections were observed using two
photographic methods: multiple double-pass laser schlieren at a framing rate of
approximately 20,000 pps., and single frame contact shadowgraphy. In each case
the exposure time per frame was approximately 50 ns. The shadowgraphs produced
very high quality distortionless pictures, bu* *“hey did not reveal details of the
density variations behind the shocks to ..c .ame degree as the schlieren
photographs. The double-pass schlieren system has been described by Dewey and
Walker (1975). The normally reflecting mirror in this system has a 1 cm grid of
small holes through which smoke can be injected as a flow tracer. Smoke was not
used in the experiments discussed here, but the holes served as a grid of

fiducial markers.
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Region 1

The final reflectioa process in this region is shown ia figure 25 for
6; = 55° and 6: = 75°, Thea regular reflection over the first wedge encounters
the second compressive wedge, and the flow is compressed. The compression waves
generated at the corner merge into two circular shock waves. One propagates
upstream and follows the reflection point of the regular reflection and the other
propagates downstream. They are both perpendicular to the wedge surface. These
two circular shock waves interact which the reflected shock wave of the second
and first regular reflections to form two triple points. The slipstreams of
these triple points coincide at & point on the wedge. This point propagates
upstream along the second wedge surface. The information about the change in the

slope of the surface is probably bounded by these two shock waves.

Region 2

The final reflection process in this region is shown as a schlieren
photograph in figure 26 for 6; = 65° and 9: = 50°. The regular reflection over
the firgt wedge encountered an expansive corner which generated expansion waves,
which can be seen in the figure, one propagating downstream just behind the
reflection point, and the other propagating upstream along the first wedge. the
combinat{on of Gi and 93 in this experiment lies in region 2a of figure 1l and 1t
is expected that the pressure in the small region behind the reflected shock and
the rarefaction is at a higher pressure than behind the reflected shock on the

first wedge.
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Region 3

The schlieren photograph of the unsteady wave system, generated when the
first Mach stem encounters the sudden change in the slope of the surface 1s shown
in figure 27 for Oé = 35° and 63 = 15°. A rarefaction wave is seen to be
travelling backwards carrying the information about the sudden change in the
model geometry. This corner signal causes the readjustment of the wave angles of
the second Mach reflection needed to negotiate the new slope of the second wedge.
As the rarefaction produced at the corner advanced up the first Mach stem 1t
produced a weaker shock over the gecond surface. The contact surface geparating
the gases behind the stronger and weaker shocks, until the rarefaction reached

the triple point, can be clearly seen in figure 27.

Region 4

The final reflection process in this region is shown in figure 28 for
G; = 60° and 63 = 30°. The regular reflection over the first surface encounters
the sudden change in the slope and forms a Mach reflection over the second
surface. The ra.cfaction wave generated at the corner, carries the information
about the sudden change in the wedge geometry and causes the reflection to adjust

its wave angles to negotiate the new slope of the second wedge.

Region 5

The reflection process in this region 1s shown in figures 29a to 29e for
9; = 20° and 6: = 75°, The Mach reflection over the first wedge {s shown in
figure 29a. 1Its collieion with the second wedge results in a regular reflection
(figure 29b). The triple point of the Mach reflection over the first wedge and

the reflectfon point of the regular reflection of the Mach stem over the second
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wedge interact on the second wedge. Figure 29c¢c was recorded shortly after this
interaction. The reflected shock wave of the Mach reflection now lags behind the
incident sheck wave. A clearer counfiguration of the wave system at a later time
is shown in figure 29d. The incident shock wave reflects from the second surface
regularly. The reflected shock of the original Mach reflection reflects
regularly from the second surface, and follows the major regular reflection. As
this secondary regular reflection propagates along the wedge the wave angles of
the incident and reflected shocks change until they merge together and form a

single shock normal to the reflection surface, as shown in figure 29e.

Region 6

The reflection process in this reglon is shown in figures 30a to 30c for
ei = 15° and 93 = 35°. The Mach stem of the Mach reflection over the first wedge
reflects from the second wedge also as a Mach reflection (figure 30b). The two
triple poinfs later interact (figure 30b) resulting in a direct Mach reflection
of the incident shock wave over the second wedge. A second triple point is
formed at the intersection of the two reflected shock, as shown in figure 30c,

but the slipstream from this triple point is not visible in the shadowgraph.

Region 7

The reflection process .n this region is shown in figures 3la and 31b for

93 = 25° and 63 = 60°. The Mach stem of the Mach reflection over the first wedge

reflects over the second wedge as a Mach reflection (figure 3la). The two triple

points interact to give an inverse-Mach reflection (Takayama & Ben-Dor, 1985),
i.e., 1ts triple point propagates towards the second wedge surface. When 1t

meets the
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second surface the inverse-Mach reflection terminates and a regular reflection 1s
formed, as shown in figure 3lb. The reflection is followed by a shock wave
which is perpendicular to the second wedge surface, and which meets the reflected
shock at a triple point. Another triple point is generated by the reflected
shock waves of the two Mach reflections. The slipstreams of the two triple
points can be seen in the shadowgraph of figure 31b.

The final wave configuration shown in figure 31b 13 similar to the ome
finally obtained through the reflection process of region 5. However, the normal
shock wave in region 6 was established at the moment the inverse-Mach reflection
terminated at the wedge surface, while in region 5 the initial reflection is a

regular reflection which degenerates into a normal shock wave.

Conclusions

The reflection processes of a plane shock wave over a concave or convex
double wedge, have been analyzed using the basic concepts of the reflection of a
plane shock wave over a single wedge. It was found that there are seven
different reflection processes, which are summarized in Table 1.

To simplify the analysis of the shock reflection processes a number of
agssumptions were made, namely, that transition between regular and Mach
reflection would take place according to the theoretical "detachment™ criterion;
that all Mach stems would be straight, and that the same “"detachment™ transition
angle could be used for both the incident and Mach stem shock waves. It 1is known
that transition between regular and Mach reflection over a wedge does not occur
at the angle predicted by theory; that for most shock strengths the Mach stem

shock 18 curved, and that there will be a slight difference in the transition
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angle for the incident and Mach stem shock waves. Nevertheless we believe that
the shock reflection processes described here are qualitatively correct.

Por each of the seven reflection processes a shock polar analysis was
carried out. These analyses have provided information about the detailed wave
structures following the main reflections along the wedge surfaces, and have made
it posaible to identify tﬁe sudden pressure changes as the reflections moved from
the firet to the second wedge. The different reflection pr cesses predicted by
the analysis, and the shock structures predicted by the shock polars have all
been verified experimentally using shadowgraph and schlieren photographs. The
shock waves which support the sudden pressure changes produced by some of the
transitions and predicted by the shock polar solutions, have been observed. In
some cases these shocks are normal to the reflecting surface and in other cases
they are regularly reflected shocks. The criteria to determine which of those

configurations will occur, have not yet been established, but are the subject of

continuing studies.
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9"1 6w2 A8, First surface Second surface | Reglon

> det > det - Regular Regular 2
Convex | < det < det - Mach Mach 3

> det < det - Regular Mach 4

> det > det - Regular Regular 1

< det > det > det Mach Regular+Regular 5
Concave

< det < det < det Mach Mach+Mach 6

< det > det < det . Mach Mach+Regular 7

Table 1

A summary of the seven different reflection processes which can occur over
convex and concave double wedges depending on the magnituge of the wedge angles
9& , 63 and A8, compared to the detachment wedge angle 6 et(referred to simply
as 'det' above). The numbers in the final column refer to the regions in the Gb,

93 plane of figure 5.
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Part Z

Numerical Investigation of the Reflection of a Plane Shock Wave
Over a Doublie Wedge




As mentioned earlier a numerical code based on the T%D scheme was
developed. In the following, twelve exampies are illustrated. The initial
conditions for each of the twelve cases are given in Table 1. Each example
consists of 5 figures, and one table, namely;

- the actual interferogram of the experiment

- the values of the 1abelled isopycnics

- the numerical simulation

- the pressure distribution along the wedge

- the density distribution along the wedqge.

The pressure and density distributions along the wedge were obtained using
the numerical simulation.

Similar plots of the distribution of any flow property at any place and
at any time can easily be obtained by the numerical code.




Table i: The initial conditions of the 12 cases shown in the following
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1.96 at 50.7 kPa, 25°/60°
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Ms=1.96 at 50.7 kPa, 15°/35°
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2.17 at 30.4 kPa, 35°/15°
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